metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4,10,13-Tetraoxa-7,16-diazoniacyclooctadecane bis[tetrachloridoaurate(III)] dihydrate

Leila Hojjat Kashani,^a Mohammad Yousefi,^a* Vahid Amani^a and Hamid Reza Khavasi^b

^aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, and ^bDepartment of Chemistry, Shahid Beheshti University, Tehran 1983963113, Iran Correspondence e-mail: myousefi50@yahoo.com

Received 18 May 2008; accepted 21 May 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.006 Å; R factor = 0.018; wR factor = 0.046; data-to-parameter ratio = 16.6.

The asymmetric unit of the title compound, (C12H28N2O4)-[AuCl₄]₂·2H₂O, contains one half-cation, one anion and one water molecule; the cation is centrosymmetric. The Au ion has a square-planar coordination. In the crystal structure, intramolecular N-H···O and O-H···O, and intermolecular N- $H \cdots O, O - H \cdots Cl$ and $N - H \cdots Cl$ hydrogen bonds link the ions and water molecules, forming a supramolecular structure.

Related literature

For related literature, see: Calleja et al. (2001); Chekhlov (2000, 2001, 2005); Chekhlov & Martynov (1998); Chekhlov et al. (1994); Fonari et al. (2004); Hasan et al. (1999); Johnson & Steed (1998); Moers et al. (2000); Simonov et al. (2003); Yap et al. (1995); Yousefi, Amani & Khavasi (2007); Yousefi, Teimouri et al. (2007); Zhang et al. (2006).

Experimental

Crystal data

$(C_{12}H_{28}N_2O_4)[AuCl_4]_2 \cdot 2H_2O$	b = 8.3359 (9) Å
$M_r = 977.94$	c = 11.2989 (15) Å
Triclinic, P1	$\alpha = 73.063 \ (11)^{\circ}$
a = 8.0168 (10) Å	$\beta = 75.965 \ (10)^{\circ}$

$\gamma = 74.929 \ (9)^{\circ}$
$V = 686.02 (15) \text{ Å}^3$
Z = 1
Mo $K\alpha$ radiation

Data collection

Stoe IPDSII diffractometer Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie 2005) $T_{\min} = 0.065, T_{\max} = 0.108$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.017$	H atoms treated by a mixture o
$wR(F^2) = 0.045$	independent and constrained
S = 1.18	refinement
2390 reflections	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
144 parameters	$\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$

 $\mu = 11.49 \text{ mm}^{-1}$ T = 120 (2) K

 $R_{\rm int} = 0.027$

 $0.32 \times 0.22 \times 0.20$ mm

4188 measured reflections

2390 independent reflections

2381 reflections with $I > 2\sigma(I)$

of

Table 1

Selected geometric parameters (Å, °).

Cl1—Au1	2.2796 (11)	Cl3—Au1	2.2912 (11)
Cl2—Au1	2.2877 (10)	Cl4—Au1	2.2751 (11)
Cl4—Au1—Cl1	90.20 (4)	Cl4-Au1-Cl3	90.30 (4)
Cl4—Au1—Cl2	176.52 (4)	Cl1-Au1-Cl3	176.79 (3)
Cl1—Au1—Cl2	89.96 (4)	Cl2-Au1-Cl3	89.74 (4)

Table 2

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{M1-H1C\cdots O1^{i}}$	0.90	2.49	2.791 (5)	100
$N1 - H1C \cdot \cdot \cdot O3$	0.90	1.98	2.844 (3)	160
$N1 - H1D \cdot \cdot \cdot Cl1^{ii}$	0.90	2.81	3.540 (4)	139
$N1 - H1D \cdot \cdot \cdot Cl2^{ii}$	0.90	2.49	3.262 (3)	143
O3−H3C···O1	0.76 (6)	2.14 (6)	2.858 (4)	158 (6)
O3−H3C···O2	0.76 (6)	2.51 (6)	3.057 (3)	130 (5)
$O3-H3D\cdots Cl3^{iii}$	0.81 (7)	2.59 (6)	3.378 (4)	167.00

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2465).

References

- Calleja, M., Johnson, K., Belcher, W. J. & Steed, W. (2001). Inorg. Chem. 40, 4978-4985.
- Chekhlov, A. N. (2000). J. Struct. Chem. 41, 1046-1052.
- Chekhlov, A. N. (2001). Dokl. Akad. Nauk SSSR, 42, 854-859.
- Chekhlov, A. N. (2005). Russ. J. Gen. Chem. 75, 1618-1621.
- Chekhlov, A. N. & Martynov, I. V. (1998). Dokl. Akad. Nauk SSSR, 363, 362-366

- Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1994). Dokl. Akad. Nauk SSSR, 339, 635–640.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fonari, M. S., Simonov, Y. A., Chumakov, Y. M., Bocelli, G., Ganin, E. V. & Yavolovskii, A. A. (2004). *Supramol. Chem.* **16**, 23–30.
- Hasan, M., Kozhevnikov, I. V., Siddiqu, M. R. H., Steiner, A. & Winterton, N. (1999). *Inorg. Chem.* **38**, 5637–5641.
- Johnson, K. & Steed, J. W. (1998). Chem. Commun. pp. 1479-1480.
- Moers, O., Henschel, D., Lange, I., Blaschette, A. & Jones, P. G. (2000). Z. Anorg. Allg. Chem. 626, 2388–2398.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simonov, Y. A., Fonari, M. S., Lipkowski, J., Yavolovskii, A. A. & Ganin, E. V. (2003). J. Incl. Phenom. Macrocycl. Chem. 46, 27–35.
- Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED. Stoe & Cie, Darmstadt, Germany.
- Yap, G. P. A., Rheingold, A. R., Das, P. & Crabtree, R. H. (1995). *Inorg. Chem.* **34**, 3474–3476.
- Yousefi, M., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, 03782.
- Yousefi, M., Teimouri, S., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m2460-m2461.
- Zhang, X.-P., Yang, G. & Ng, S. W. (2006). Acta Cryst. E62, m2018-m2020.

Acta Cryst. (2008). E64, m840-m841 [doi:10.1107/S1600536808015353]

1,4,10,13-Tetraoxa-7,16-diazoniacyclooctadecane bis[tetrachloridoaurate(III)] dihydrate

L. Hojjat Kashani, M. Yousefi, V. Amani and H. R. Khavasi

Comment

Recently, we reported the synthesis and crystal structure of the $[(H_2DA18C6)Cl_2]$, (II), (Yousefi, Amani & Khavasi, 2007) and $[(H_2DA18C6)][PtCl_6].2H_2O$, (III), (Yousefi, Teimouri *et al.*, 2007) [where H_2DA18C6 is 1,10-Diazonia-18-crown-6]. Several proton transfer systems using 1,10-diaza-18-crown-6, with proton donor molecules, such as $[(H_2DA18C6)I_2.2H_2O]$, (IV), (Chekhlov, 2005), $[(H_2DA18C6)(C_2HO_4)_2]$, (V), and $[(H_2DA18C6)_2(C_2O_4)_2.2H_2O]$, (VI), (Chekhlov, 2000), $[(H_2DA18C6)(picrate)_2]$, (VII), (Chekhlov, 2001), $[(H_2DA18C6)(HPTD)_2]$, (VIII), (Simonov *et al.*, 2003), $[(H_2DA18C6)(PD)_2.(H_2O)_4]$, (IX), and $[(H_2DA18C6)(PS)_2.(H_2O)_2]$, (X), (Fonari *et al.*, 2004), $[(H_2DA18C6)(CCl_3COO)_2(CCl_3COOH)_2]$, (XI), (Chekhlov *et al.*, 1994), $[(H_2DA18C6)(CCl_3COO)_2]$, (XII), (Chekhlov & Martynov, 1998), and $\{[H_2DA18C6][(ArSO_2)_2N]_2\}$, (XIII), (Moers *et al.*, 2000) [where C₂O₄ is oxalate, HPTD is (4Z,5E)-pyrimidine-2,4,5,6(1H,3H) -tetraone 4,5-dioxime anion, PD is 2-(2-methylphenyl)-2H-[1,2,3]- triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione 3-oxide anion, PS is 6-amino-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-ylsulfamate and (ArSO₂)₂N is bis(4-chlorobenzenesulfonyl)imide] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several proton transfer systems using HAuCl₄ with proton acceptor molecules, such as [EMI][AuCl₄] (XIV) and [BMI]₂[AuCl₄].2H₂O, (XV), (Hasan *et al.*, 1999), [H₂bipy][AuCl₄][Cl], (XVI), (Zhang *et al.*, 2006), [H₇O₃][15crown-5][AuCl₄], (XVII) and [H₅O₂][benzo-15-crown-5] ₂[AuCl₄], (XVIII), (Johnson & Steed, 1998), [H₅O₂]₂[12-crown-4]₂ [AuCl₄]₂, (XIX), [H₃O][18-crown-6][AuCl₄], (XX) and [H₃O] [4-nitrobenzo-18-crown-6][AuCl₄], (XXI), (Calleja *et al.*, 2001) and [DPpy.H][AuCl₄], (XXII), (Yap *et al.*, 1995) [where EMI is 1-ethyl-3-methylimidazolium, BMI is 1-butyl-3methylimidazolium, H₂bipy is 2,2'-bipyridinium and DPpy.H is 2,6-Diphenylpyridinium] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1) contains one half-cation, one anion and one water molecule; the cation is centrosymmetric. The Au ion has a square-planar coordination (Table 1). The bond lengths and angles, in cation, are in good agreement with the corresponding values in (II), (III) and (IV). Also, the Au-Cl bond lengths and angles (Table 1) are within normal range [XXII].

In the crystal structure, intramolecular N-H···O and O-H···O and intermolecular N-H···O, O-H···Cl and N-H···Cl hydrogen bonds (Table 2) link the molecules to form a supramolecular structure (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, (I), a solution of 1,10-diaza-18 -crown-6 (0.10 g, 0.37 mmol) in EtOH (20 ml) was added to a solution of HAuCl₄.3H₂O, (0.29 g, 0.74 mmol) in water (30 ml) and the resulting yellow solution was stirred

for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of (I) were isolated (yield; 0.26 g; 72.0%).

Refinement

H atoms (for H₂O) were located in a difference syntheses and refined [O-H = 0.71 (6) and 0.76 (6) Å; $U_{iso}(H) = 0.019$ (15) and 0.034 (17) Å²]. The remaining H atoms were positioned geometrically, with N-H = 0.90 Å (for NH₂) and C-H = 0.97 Å for methylene H and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The asymmetric unit of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (a) 1 - x, 1 - y, -z].

Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

1,4,10,13-Tetraoxa-7,16-diazoniacyclooctadecane bis[tetrachloridoaurate(III)] dihydrate

Crystal data	
$(C_{12}H_{28}N_2O_4)[AuCl_4]_2 \cdot 2H_2O$	Z = 1
$M_r = 977.94$	$F_{000} = 460$
Triclinic, <i>P</i> T	$D_{\rm x} = 2.367 {\rm ~Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.0168 (10) Å	Cell parameters from 1139 reflections
b = 8.3359 (9) Å	$\theta = 1.9 - 25.2^{\circ}$
c = 11.2989 (15) Å	$\mu = 11.49 \text{ mm}^{-1}$
$\alpha = 73.063 \ (11)^{\circ}$	T = 120 (2) K
$\beta = 75.965 \ (10)^{\circ}$	Block, yellow
$\gamma = 74.929 \ (9)^{\circ}$	$0.32 \times 0.22 \times 0.20 \text{ mm}$
$V = 686.02 (15) \text{ Å}^3$	
Data collection	
Stoe IPDSII diffractometer	2390 independent reflections

2381 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.027$

Radiation source: fine-focus sealed tube

Monochromator: graphite

Detector resolution: 0.15 mm pixels mm ⁻¹	$\theta_{\text{max}} = 25.2^{\circ}$
T = 120(2) K	$\theta_{\min} = 1.9^{\circ}$
rotation method scans	$h = -9 \rightarrow 8$
Absorption correction: numerical shape of crystal determined optically	$k = -9 \rightarrow 8$
$T_{\min} = 0.065, \ T_{\max} = 0.108$	$l = -12 \rightarrow 12$
4188 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.017$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0216P)^2 + 1.1824P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.18	$(\Delta/\sigma)_{\rm max} = 0.018$
2390 reflections	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
144 parameters	$\Delta \rho_{\rm min} = -0.67 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Experimental. (X-SHAPE and X-RED; Stoe & Cie, 2005)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Au1	0.774200 (17)	0.949008 (17)	0.436516 (13)	0.01917 (8)
Cl1	0.65158 (14)	0.91699 (13)	0.64419 (10)	0.0271 (2)
Cl2	0.77516 (14)	0.66859 (13)	0.45325 (10)	0.0249 (2)
C13	0.88196 (14)	0.98407 (13)	0.22535 (10)	0.0257 (2)
Cl4	0.79013 (16)	1.22269 (14)	0.42240 (12)	0.0362 (3)
01	0.8055 (4)	0.5576 (4)	-0.1123 (3)	0.0230 (6)
O2	0.6857 (4)	0.6728 (3)	0.1006 (3)	0.0227 (6)
03	0.6136 (4)	0.3371 (5)	0.0862 (4)	0.0259 (7)
НЗС	0.666 (7)	0.406 (7)	0.049 (5)	0.019 (15)*

H3D	0.689 (8)	0.264 (8)	0.118 (5)	0.034 (17)*
N1	0.3824 (4)	0.5189 (4)	0.2598 (3)	0.0193 (7)
H1C	0.4424	0.4823	0.1909	0.023*
H1D	0.3672	0.4259	0.3230	0.023*
C1	0.7938 (5)	0.3778 (5)	-0.2343 (4)	0.0231 (9)
H1A	0.7787	0.2856	-0.1594	0.028*
H1B	0.8544	0.3272	-0.3043	0.028*
C2	0.9019 (5)	0.4874 (5)	-0.2162 (4)	0.0228 (9)
H2A	1.0152	0.4194	-0.1983	0.027*
H2B	0.9210	0.5783	-0.2913	0.027*
C3	0.8743 (5)	0.6921 (5)	-0.0984 (4)	0.0232 (9)
H3A	0.9062	0.7677	-0.1798	0.028*
H3B	0.9779	0.6447	-0.0597	0.028*
C4	0.7321 (6)	0.7883 (5)	-0.0161 (4)	0.0259 (9)
H4A	0.7733	0.8800	-0.0025	0.031*
H4B	0.6303	0.8385	-0.0566	0.031*
C5	0.5532 (5)	0.7528 (5)	0.1851 (4)	0.0242 (9)
H5A	0.4568	0.8215	0.1431	0.029*
H5B	0.5998	0.8274	0.2147	0.029*
C6	0.4895 (5)	0.6163 (5)	0.2940 (4)	0.0232 (9)
H6A	0.4190	0.6689	0.3610	0.028*
H6B	0.5900	0.5367	0.3257	0.028*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Au1	0.01758 (11)	0.01715 (11)	0.02133 (12)	-0.00433 (7)	-0.00015 (7)	-0.00455 (7)
Cl1	0.0296 (5)	0.0268 (5)	0.0227 (6)	-0.0041 (4)	-0.0003 (4)	-0.0077 (4)
Cl2	0.0334 (6)	0.0204 (5)	0.0217 (5)	-0.0106 (4)	-0.0006 (4)	-0.0055 (4)
C13	0.0271 (5)	0.0229 (5)	0.0236 (5)	-0.0074 (4)	0.0019 (4)	-0.0037 (4)
Cl4	0.0433 (7)	0.0205 (5)	0.0411 (7)	-0.0105 (5)	0.0085 (5)	-0.0118 (5)
O1	0.0223 (14)	0.0256 (15)	0.0229 (16)	-0.0110 (12)	0.0022 (12)	-0.0083 (12)
O2	0.0249 (15)	0.0196 (14)	0.0227 (16)	-0.0063 (12)	-0.0022 (12)	-0.0039 (12)
O3	0.0223 (17)	0.0229 (17)	0.0312 (19)	-0.0092 (16)	0.0008 (15)	-0.0049 (14)
N1	0.0197 (17)	0.0206 (17)	0.0162 (17)	-0.0061 (13)	0.0016 (14)	-0.0046 (14)
C1	0.020 (2)	0.023 (2)	0.027 (2)	-0.0009 (16)	-0.0022 (17)	-0.0108 (18)
C2	0.018 (2)	0.027 (2)	0.022 (2)	-0.0043 (17)	0.0019 (17)	-0.0077 (18)
C3	0.023 (2)	0.024 (2)	0.025 (2)	-0.0102 (17)	-0.0032 (17)	-0.0057 (18)
C4	0.032 (2)	0.019 (2)	0.027 (2)	-0.0099 (18)	-0.0062 (19)	-0.0021 (17)
C5	0.025 (2)	0.021 (2)	0.029 (2)	-0.0057 (17)	-0.0029 (18)	-0.0100 (18)
C6	0.022 (2)	0.026 (2)	0.026 (2)	-0.0046 (17)	-0.0044 (17)	-0.0123 (18)

Geometric parameters (Å, °)

Cl1—Au1	2.2796 (11)	C2—H2B	0.9700
Cl2—Au1	2.2877 (10)	C3—O1	1.432 (5)
Cl3—Au1	2.2912 (11)	C3—C4	1.500 (6)
Cl4—Au1	2.2751 (11)	С3—НЗА	0.9700
O3—H3C	0.71 (6)	С3—НЗВ	0.9700

02 1120	0.7((())		61 03		1 410 (5)
03—H3D	0.76(6)		C4—02		1.419 (5)
N1—C1 ¹	1.496 (5)		C4—H4A		0.9700
N1—H1C	0.9000		C4—H4B		0.9700
N1—H1D	0.9000		C5—O2		1.412 (5)
C1C2	1.495 (6)		C5—C6		1.501 (6)
$C1$ — $N1^1$	1.496 (5)		C5—H5A		0.9700
C1—H1A	0.9700		С5—Н5В		0.9700
C1—H1B	0.9700		C6—N1		1.501 (5)
C2—O1	1.429 (5)		С6—Н6А		0.9700
С2—Н2А	0.9700		C6—H6B		0.9700
Cl4—Au1—Cl1	90.20 (4)		H2A—C2—H2B		108.6
Cl4—Au1—Cl2	176.52 (4)		O1—C3—C4		106.8 (3)
Cl1—Au1—Cl2	89.96 (4)		O1—C3—H3A		110.4
Cl4—Au1—Cl3	90.30 (4)		C4—C3—H3A		110.4
Cl1—Au1—Cl3	176.79 (3)		O1—C3—H3B		110.4
Cl2—Au1—Cl3	89.74 (4)		C4—C3—H3B		110.4
C2—O1—C3	113.3 (3)		НЗА—СЗ—НЗВ		108.6
C5—O2—C4	112.8 (3)		O2—C4—C3		108.8 (3)
H3C—O3—H3D	103 (6)		O2—C4—H4A		109.9
C1 ⁱ —N1—C6	113.5 (3)		C3—C4—H4A		109.9
C1 ⁱ —N1—H1C	108.9		O2—C4—H4B		109.9
C6—N1—H1C	108.9		C3—C4—H4B		109.9
C1 ⁱ —N1—H1D	108.9		H4A—C4—H4B		108.3
C6—N1—H1D	108.9		O2—C5—C6		108.5 (3)
H1C—N1—H1D	107.7		O2—C5—H5A		110.0
C2—C1—N1 ⁱ	110.8 (3)		C6—C5—H5A		110.0
C2—C1—H1A	109.5		O2—C5—H5B		110.0
N1 ⁱ —C1—H1A	109.5		С6—С5—Н5В		110.0
C2—C1—H1B	109.5		H5A—C5—H5B		108.4
N1 ⁱ —C1—H1B	109.5		C5—C6—N1		112.9 (3)
H1A—C1—H1B	108.1		С5—С6—Н6А		109.0
O1—C2—C1	106.6 (3)		N1—C6—H6A		109.0
O1—C2—H2A	110.4		С5—С6—Н6В		109.0
C1—C2—H2A	110.4		N1—C6—H6B		109.0
O1—C2—H2B	110.4		H6A—C6—H6B		107.8
C1—C2—H2B	110.4				
$N1^{i}$ C1 - C2 - O1	59.1 (4)		C1—C2—O1—C3		-168.3 (3)
01 - C3 - C4 - 02	58.5 (4)		C4—C3—O1—C2		162.2 (3)
O2—C5—C6—N1	-71.6 (4)		C6—C5—O2—C4		169.1 (3)
$C5 - C6 - N1 - C1^{i}$	-70.3(4)		$C_{3} - C_{4} - O_{2} - C_{5}$		179 4 (3)
Symmetry codes: (i) $-r+1 -v+1 -7$, 0.5 (1)		00 01 02 00		(0)
y = 1,					
Hydrogen-bond geometrv (Å. °)					
		ם ע	Н <i>А</i>	D A	ע ח
				1 1 4	/ <u> </u>

N1—H1C···O3	0.90	1.98	2.844 (3)	160
N1—H1D…Cl1 ⁱⁱ	0.90	2.81	3.540 (4)	139
N1—H1D···Cl2 ⁱⁱ	0.90	2.49	3.262 (3)	143
O3—H3C…O1	0.76 (6)	2.14 (6)	2.858 (4)	158 (6)
O3—H3C…O2	0.76 (6)	2.51 (6)	3.057 (3)	130 (5)
O3—H3D···Cl3 ⁱⁱⁱ	0.81 (7)	2.59 (6)	3.378 (4)	167.00

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*.

